Question:

The smallest positive value (in degrees) of θ \theta for which tan(θ+100)=tan(θ+50)tan(θ50) \tan(\theta + 100^\circ) = \tan(\theta + 50^\circ) \tan(\theta - 50^\circ) is valid, is:

Show Hint

For trigonometric equations, use identities to simplify the equation and solve for θ \theta .
Updated On: Mar 19, 2025
  • 60 60^\circ
  • 45 45^\circ
  • 30 30^\circ
  • 15 15^\circ
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We are given the equation: tan(θ+100)=tan(θ+50)tan(θ50) \tan(\theta + 100^\circ) = \tan(\theta + 50^\circ) \tan(\theta - 50^\circ)  

Step 1: Recall Trigonometric Identity 
Using the identity: tanAtanB=tan(A)+tan(B)1tan(A)tan(B) \tan A \tan B = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)} We'll simplify the right side using this identity. 

Step 2: Identifying the Values 
From the given equation: tan(θ+100)=tan(θ+50)tan(θ50) \tan(\theta + 100^\circ) = \tan(\theta + 50^\circ) \tan(\theta - 50^\circ)  

Step 3: Use Identity for Product of Tangents 
Using the identity for tangent product, tan(A)tan(B)=tan(A)+tan(B)1tan(A)tan(B) \tan(A) \tan(B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)} Substituting the known angles, tan(θ+100)=tan(θ+50)+tan(θ50)1tan(θ+50)tan(θ50) \tan(\theta + 100^\circ) = \frac{\tan(\theta + 50^\circ) + \tan(\theta - 50^\circ)}{1 - \tan(\theta + 50^\circ)\tan(\theta - 50^\circ)}  

Step 4: Solving for θ \theta  
By simplifying both sides and using the tangent addition and subtraction identities, the equation simplifies to: θ=30 \theta = 30^\circ  

Final Answer: (3) 30 30^\circ

Was this answer helpful?
0
0