To prove:
\[
\frac{\cos \theta - 2 \cos^3 \theta}{\sin \theta - 2 \sin^3 \theta} + \cot \theta = 0
\]
Step 1: Factor numerator and denominator
\[
\cos \theta - 2 \cos^3 \theta = \cos \theta (1 - 2 \cos^2 \theta)
\]
\[
\sin \theta - 2 \sin^3 \theta = \sin \theta (1 - 2 \sin^2 \theta)
\]
Step 2: Rewrite expression
\[
\frac{\cos \theta (1 - 2 \cos^2 \theta)}{\sin \theta (1 - 2 \sin^2 \theta)} + \cot \theta
\]
Recall \(\cot \theta = \frac{\cos \theta}{\sin \theta}\), so rewrite as:
\[
\frac{\cos \theta (1 - 2 \cos^2 \theta)}{\sin \theta (1 - 2 \sin^2 \theta)} + \frac{\cos \theta}{\sin \theta}
\]
Step 3: Take common denominator
\[
= \frac{\cos \theta (1 - 2 \cos^2 \theta) + \cos \theta (1 - 2 \sin^2 \theta)}{\sin \theta (1 - 2 \sin^2 \theta)}
\]
Step 4: Simplify numerator
\[
\cos \theta \left[(1 - 2 \cos^2 \theta) + (1 - 2 \sin^2 \theta)\right] = \cos \theta [2 - 2(\cos^2 \theta + \sin^2 \theta)]
\]
Since \(\cos^2 \theta + \sin^2 \theta = 1\),
\[
= \cos \theta [2 - 2 \times 1] = \cos \theta \times 0 = 0
\]
Step 5: Final expression
\[
\frac{0}{\sin \theta (1 - 2 \sin^2 \theta)} = 0
\]
Hence proved:
\[
\frac{\cos \theta - 2 \cos^3 \theta}{\sin \theta - 2 \sin^3 \theta} + \cot \theta = 0
\]