Step 1: Use the sine addition formula: \[ \sin A \cos B + \cos A \sin B = \sin (A + B) \] Step 2: Apply it to the given expression: \[ \sin 75^\circ \cos 15^\circ + \cos 75^\circ \sin 15^\circ = \sin (75^\circ + 15^\circ) = \sin 90^\circ \] Step 3: Evaluate \( \sin 90^\circ \): \[ \sin 90^\circ = 1 \] Hence, the value is \( {1} \).
For the reaction \( A + B \to C \), the rate law is found to be \( \text{rate} = k[A]^2[B] \). If the concentration of \( A \) is doubled and \( B \) is halved, by what factor does the rate change?