Question:

Find the value of $ \sin 75^\circ \cos 15^\circ + \cos 75^\circ \sin 15^\circ $.

Show Hint

Use trigonometric addition formulas to simplify expressions involving sums of products of sines and cosines.
Updated On: May 30, 2025
  • 1
  • \(\frac{\sqrt{3}}{2}\)
  • \(\frac{1}{2}\)
  • \(\frac{\sqrt{2}}{2}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

The expression \( \sin 75^\circ \cos 15^\circ + \cos 75^\circ \sin 15^\circ \) can be simplified using the sine addition formula, which states:
\[\sin(A + B) = \sin A \cos B + \cos A \sin B\]
By setting \( A = 75^\circ \) and \( B = 15^\circ \), we can rewrite the original expression as:
\[\sin(75^\circ + 15^\circ)\]
Therefore,
\[\sin 90^\circ = 1\]
Hence, the value of \( \sin 75^\circ \cos 15^\circ + \cos 75^\circ \sin 15^\circ \) is \( 1 \).
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Use the sine addition formula: \[ \sin A \cos B + \cos A \sin B = \sin (A + B) \] Step 2: Apply it to the given expression: \[ \sin 75^\circ \cos 15^\circ + \cos 75^\circ \sin 15^\circ = \sin (75^\circ + 15^\circ) = \sin 90^\circ \] Step 3: Evaluate \( \sin 90^\circ \): \[ \sin 90^\circ = 1 \] Hence, the value is \( {1} \).

Was this answer helpful?
0
0