Question:

The value of $ \sin^2 30^\circ + \cos^2 60^\circ $ is:

Show Hint

Remember the special angle values: \( \sin 30^\circ = \frac{1}{2} \), \( \cos 60^\circ = \frac{1}{2} \). Squaring and adding these values carefully helps in trigonometric computations.
Updated On: May 30, 2025
  • \( \frac{1}{2} \)
  • 1
  • \( \frac{3}{4} \)
  • \( \frac{1}{4} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

To find the value of \( \sin^2 30^\circ + \cos^2 60^\circ \), we first calculate each trigonometric function:  

\( \sin 30^\circ = \frac{1}{2} \) and \( \cos 60^\circ = \frac{1}{2} \).

Thus, \( \sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) and \( \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \).

Adding these values gives \( \sin^2 30^\circ + \cos^2 60^\circ = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \).

Therefore, the correct answer is \( \frac{1}{2} \).

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Calculate \( \sin 30^\circ \) and \( \cos 60^\circ \). \[ \sin 30^\circ = \frac{1}{2}, \quad \cos 60^\circ = \frac{1}{2} \] Step 2: Square both values: \[ \sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4}, \quad \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] Step 3: Add the squares: \[ \sin^2 30^\circ + \cos^2 60^\circ = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \] Hence, the value is \( \boxed{\frac{1}{2}} \).
Was this answer helpful?
0
0