To find the value of \( \sin^2 30^\circ + \cos^2 60^\circ \), we first calculate each trigonometric function:
\( \sin 30^\circ = \frac{1}{2} \) and \( \cos 60^\circ = \frac{1}{2} \).
Thus, \( \sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) and \( \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \).
Adding these values gives \( \sin^2 30^\circ + \cos^2 60^\circ = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \).
Therefore, the correct answer is \( \frac{1}{2} \).
Given that $\sin \theta + \cos \theta = x$, prove that $\sin^4 \theta + \cos^4 \theta = \dfrac{2 - (x^2 - 1)^2}{2}$.