To find the shortest distance between two skew lines, we use the formula for the distance between two skew lines:
Let's consider the lines: \(L₁: \frac{x-3}{4} = \frac{y+7}{-11} = \frac{z-1}{5}\)
\(L₂: \frac{x-5}{3} = \frac{y-9}{-6} = \frac{z+2}{1}\)
The direction vectors for these lines are:
The formula for the distance \(d\) between two skew lines is: \(d = \frac{|(\mathbf{a₂} - \mathbf{a₁}) \cdot (\mathbf{d₁} \times \mathbf{d₂})|}{|\mathbf{d₁} \times \mathbf{d₂}|}\)
Substitute the initial points on each line: \(\mathbf{a₁} = (3, -7, 1)\) and \(\mathbf{a₂} = (5, 9, -2)\).
First, find the vector between points on the lines:
\(\mathbf{a₂} - \mathbf{a₁} = (5 - 3, 9 + 7, -2 - 1) = (2, 16, -3)\)
Next, calculate the cross product of \(\mathbf{d₁}\) and \(\mathbf{d₂}\):
\(\mathbf{d₁} \times \mathbf{d₂} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -11 & 5 \\ 3 & -6 & 1 \end{vmatrix}\)
\(= \mathbf{i}((-11)(1) - (5)(-6)) - \mathbf{j}((4)(1) - (5)(3)) + \mathbf{k}((4)(-6) - (-11)(3))\)
\(= \mathbf{i}(-11 + 30) - \mathbf{j}(4 - 15) + \mathbf{k}(-24 + 33)\)
\(= (19, 11, 9)\)
Now, calculate the dot product \((\mathbf{a₂} - \mathbf{a₁}) \cdot (\mathbf{d₁} \times \mathbf{d₂})\):
\((2, 16, -3) \cdot (19, 11, 9) = (2)(19) + (16)(11) + (-3)(9)\)
\(= 38 + 176 - 27 = 187\)
Next, find the magnitude of the cross product \(|\mathbf{d₁} \times \mathbf{d₂}|\):
\(=\sqrt{19^2 + 11^2 + 9^2}\)
\(=\sqrt{361 + 121 + 81}\)
\(=\sqrt{563}\)
Finally, calculate the shortest distance \(d\):
\(d = \frac{|187|}{\sqrt{563}}\) = \(\frac{187}{\sqrt{563}}\)
Therefore, the shortest distance between the given lines is \(\frac{187}{\sqrt{563}}\).
Step 1: Represent the lines in vector form The first line can be written as:
\(\vec{r_1} = \vec{a_1} + \lambda \vec{p}, \quad \text{where } \vec{a_1} = 3\hat{i} - 7\hat{j} + \hat{k}, \quad \vec{p} = 4\hat{i} - 11\hat{j} + 5\hat{k}.\)
The second line can be written as:
\(\vec{r_2} = \vec{a_2} + \mu \vec{q}, \quad \text{where } \vec{a_2} = 5\hat{i} + 9\hat{j} - 2\hat{k}, \quad \vec{q} = 3\hat{i} - 6\hat{j} + \hat{k}.\)
Step 2: Find the direction vector perpendicular to both lines The direction vector perpendicular to both lines is:
\(\vec{n} = \vec{p} \times \vec{q}.\)
Using the determinant method for the cross product:
\(\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -11 & 5 \\ 3 & -6 & 1 \end{vmatrix}.\)
Expanding the determinant:
\(\vec{n} = \hat{i}((-11)(1) - (-6)(5)) - \hat{j}((4)(1) - (3)(5)) + \hat{k}((4)(-6) - (3)(-11)).\)
\(\vec{n} = \hat{i}(-11 + 30) - \hat{j}(4 - 15) + \hat{k}(-24 + 33).\)
\(\vec{n} = 19\hat{i} + 11\hat{j} + 9\hat{k}.\)
Step 3: Find \(\vec{AB}\) The vector \(\vec{AB}\) is:
\(\vec{AB} = \vec{a_2} - \vec{a_1} = (5 - 3)\hat{i} + (9 - (-7))\hat{j} + (-2 - 1)\hat{k}.\)
\(\vec{AB} = 2\hat{i} + 16\hat{j} - 3\hat{k}.\)
Step 4: Shortest distance formula The shortest distance between two skew lines is:
\(\text{S.D.} = \frac{|\vec{AB} \cdot \vec{n}|}{|\vec{n}|}.\)
Dot product \(\vec{AB} \cdot \vec{n}\):
\(\vec{AB} \cdot \vec{n} = (2)(19) + (16)(11) + (-3)(9).\)
\(\vec{AB} \cdot \vec{n} = 38 + 176 - 27 = 187.\)
Magnitude of \(\vec{n}\):
\(|\vec{n}| = \sqrt{19^2 + 11^2 + 9^2}.\)
\(|\vec{n}| = \sqrt{361 + 121 + 81} = \sqrt{563}.\)
Shortest distance:
\(\text{S.D.} = \frac{|\vec{AB} \cdot \vec{n}|}{|\vec{n}|} = \frac{187}{\sqrt{563}}.\)
Final Answer: Option (1).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
