Step 1: Represent the lines in vector form The first line can be written as:
\(\vec{r_1} = \vec{a_1} + \lambda \vec{p}, \quad \text{where } \vec{a_1} = 3\hat{i} - 7\hat{j} + \hat{k}, \quad \vec{p} = 4\hat{i} - 11\hat{j} + 5\hat{k}.\)
The second line can be written as:
\(\vec{r_2} = \vec{a_2} + \mu \vec{q}, \quad \text{where } \vec{a_2} = 5\hat{i} + 9\hat{j} - 2\hat{k}, \quad \vec{q} = 3\hat{i} - 6\hat{j} + \hat{k}.\)
Step 2: Find the direction vector perpendicular to both lines The direction vector perpendicular to both lines is:
\(\vec{n} = \vec{p} \times \vec{q}.\)
Using the determinant method for the cross product:
\(\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -11 & 5 \\ 3 & -6 & 1 \end{vmatrix}.\)
Expanding the determinant:
\(\vec{n} = \hat{i}((-11)(1) - (-6)(5)) - \hat{j}((4)(1) - (3)(5)) + \hat{k}((4)(-6) - (3)(-11)).\)
\(\vec{n} = \hat{i}(-11 + 30) - \hat{j}(4 - 15) + \hat{k}(-24 + 33).\)
\(\vec{n} = 19\hat{i} + 11\hat{j} + 9\hat{k}.\)
Step 3: Find \(\vec{AB}\) The vector \(\vec{AB}\) is:
\(\vec{AB} = \vec{a_2} - \vec{a_1} = (5 - 3)\hat{i} + (9 - (-7))\hat{j} + (-2 - 1)\hat{k}.\)
\(\vec{AB} = 2\hat{i} + 16\hat{j} - 3\hat{k}.\)
Step 4: Shortest distance formula The shortest distance between two skew lines is:
\(\text{S.D.} = \frac{|\vec{AB} \cdot \vec{n}|}{|\vec{n}|}.\)
Dot product \(\vec{AB} \cdot \vec{n}\):
\(\vec{AB} \cdot \vec{n} = (2)(19) + (16)(11) + (-3)(9).\)
\(\vec{AB} \cdot \vec{n} = 38 + 176 - 27 = 187.\)
Magnitude of \(\vec{n}\):
\(|\vec{n}| = \sqrt{19^2 + 11^2 + 9^2}.\)
\(|\vec{n}| = \sqrt{361 + 121 + 81} = \sqrt{563}.\)
Shortest distance:
\(\text{S.D.} = \frac{|\vec{AB} \cdot \vec{n}|}{|\vec{n}|} = \frac{187}{\sqrt{563}}.\)
Final Answer: Option (1).