Let the line of the shortest distance between the lines \(L_1: \vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})\)and \(L_2: \vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu(\hat{i} + \hat{j} - \hat{k})\) intersect \(L_1\) and \(L_2\) at \(P\) and \(Q\), respectively. If \((\alpha, \beta, \gamma)\) is the midpoint of the line segment \(PQ\), then \(2(\alpha + \beta + \gamma)\) is equal to \(\_\_\_\_\).