The problem asks for the largest possible value of \(|\lambda|\) given the equations of two lines in 3D space and the shortest distance between them. The shortest distance between two skew lines is given by a standard formula involving vector operations.
The shortest distance (SD) between two skew lines, \(L_1: \vec{r} = \vec{a_1} + t\vec{b_1}\) and \(L_2: \vec{r} = \vec{a_2} + s\vec{b_2}\), is given by the formula:
\[ \text{SD} = \left| \frac{(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})}{|\vec{b_1} \times \vec{b_2}|} \right| \]This formula calculates the length of the projection of the vector connecting a point on each line (\(\vec{a_2} - \vec{a_1}\)) onto the vector normal to both lines (\(\vec{b_1} \times \vec{b_2}\)).
Step 1: Identify the position vectors and direction vectors from the given line equations.
For the first line, \(L_1: \frac{x - \lambda}{3} = \frac{y - 2}{-1} = \frac{z - 1}{1}\):
For the second line, \(L_2: \frac{x + 2}{-3} = \frac{y + 5}{2} = \frac{z - 4}{4}\):
Step 2: Calculate the vector \(\vec{a_2} - \vec{a_1}\).
\[ \vec{a_2} - \vec{a_1} = (-2 - \lambda)\mathbf{i} + (-5 - 2)\mathbf{j} + (4 - 1)\mathbf{k} \] \[ \vec{a_2} - \vec{a_1} = (-2 - \lambda)\mathbf{i} - 7\mathbf{j} + 3\mathbf{k} \]Step 3: Calculate the cross product of the direction vectors, \(\vec{b_1} \times \vec{b_2}\).
\[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix} \] \[ = \mathbf{i}((-1)(4) - (1)(2)) - \mathbf{j}((3)(4) - (1)(-3)) + \mathbf{k}((3)(2) - (-1)(-3)) \] \[ = \mathbf{i}(-4 - 2) - \mathbf{j}(12 + 3) + \mathbf{k}(6 - 3) \] \[ = -6\mathbf{i} - 15\mathbf{j} + 3\mathbf{k} \]Step 4: Calculate the magnitude of the cross product, \(|\vec{b_1} \times \vec{b_2}|\).
\[ |\vec{b_1} \times \vec{b_2}| = \sqrt{(-6)^2 + (-15)^2 + (3)^2} \] \[ = \sqrt{36 + 225 + 9} = \sqrt{270} = \sqrt{9 \times 30} = 3\sqrt{30} \]Step 5: Calculate the scalar triple product, \((\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})\).
\[ ((-2 - \lambda)\mathbf{i} - 7\mathbf{j} + 3\mathbf{k}) \cdot (-6\mathbf{i} - 15\mathbf{j} + 3\mathbf{k}) \] \[ = (-2 - \lambda)(-6) + (-7)(-15) + (3)(3) \] \[ = 12 + 6\lambda + 105 + 9 = 126 + 6\lambda \]Step 6: Substitute these results into the shortest distance formula and solve for \(\lambda\).
The shortest distance is given as \(\frac{44}{\sqrt{30}}\).
\[ \frac{44}{\sqrt{30}} = \left| \frac{126 + 6\lambda}{3\sqrt{30}} \right| \]We can cancel \(\sqrt{30}\) from both sides:
\[ 44 = \left| \frac{126 + 6\lambda}{3} \right| \] \[ 44 = |42 + 2\lambda| \]This absolute value equation leads to two possible cases:
Case 1: \(42 + 2\lambda = 44\)
\[ 2\lambda = 2 \implies \lambda = 1 \]Case 2: \(42 + 2\lambda = -44\)
\[ 2\lambda = -86 \implies \lambda = -43 \]Step 7: Determine the largest possible value of \(|\lambda|\).
The two possible values for \(\lambda\) are 1 and -43. We find their absolute values:
\[ |1| = 1 \] \[ |-43| = 43 \]The largest of these two values is 43.
Therefore, the largest possible value of \(|\lambda|\) is 43.
Let
\[\vec{a}_1 = \lambda \hat{i} + 2 \hat{j} + \hat{k}\]
\[\vec{a}_2 = -2 \hat{i} - 5 \hat{j} + 4 \hat{k}\]
\[\vec{p} = 3 \hat{i} - \hat{j} + \hat{k}\]
\[\vec{q} = 3 \hat{i} + 2 \hat{j} + 4 \hat{k}\]
Now, the vector \( \vec{a}_1 - \vec{a}_2 \) is given by:
\[(\lambda + 2) \hat{i} + 7 \hat{j} - 3 \hat{k}\]
Calculate \( \vec{p} \times \vec{q} \):
\[\vec{p} \times \vec{q} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\3 & -1 & 1 \\3 & 2 & 4\end{vmatrix}= -6 \hat{i} - 15 \hat{j} + 3 \hat{k}\]
The shortest distance \( d \) is given by:
\[d = \frac{|(\vec{a}_1 - \vec{a}_2) \cdot (\vec{p} \times \vec{q})|}{|\vec{p} \times \vec{q}|}\]
Substitute the values:
\[d = \frac{| -6\lambda - 12 - 105 + 9|}{\sqrt{(-6)^2 + (-15)^2 + 3^2}} = \frac{|6\lambda + 126|}{3 \sqrt{30}}\]
Equating, we get:
\[\frac{44}{\sqrt{30}} = \frac{|6\lambda + 126|}{3 \sqrt{30}}\]
\[132 = |6\lambda + 126|\]
Solving for \( \lambda \):
\[\lambda = 1 \quad \text{or} \quad \lambda = -43\]
Thus, the largest possible value of \( |\lambda| \) is:
\[|\lambda| = 43\]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
