The formula for resistivity is given by:
\(\rho = R \frac{\pi r^2}{l}\)
The relative error in resistivity is given by:
\(\frac{\Delta \rho}{\rho} = \frac{\Delta R}{R} + 2 \frac{\Delta r}{r} + \frac{\Delta l}{l}\)
Substituting the given values:
\(\frac{\Delta \rho}{\rho} = \frac{10}{100} + 2 \times \frac{0.05}{0.35} + \frac{0.2}{15}\)
Calculating each term:
\(\frac{\Delta \rho}{\rho} = 0.1 + 2 \times 0.1429 + 0.0133\)
\(\frac{\Delta \rho}{\rho} \approx 0.1 + 0.2858 + 0.0133 = 0.3991 \approx 39.9\%\)
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: