The formula for resistivity is given by:
\(\rho = R \frac{\pi r^2}{l}\)
The relative error in resistivity is given by:
\(\frac{\Delta \rho}{\rho} = \frac{\Delta R}{R} + 2 \frac{\Delta r}{r} + \frac{\Delta l}{l}\)
Substituting the given values:
\(\frac{\Delta \rho}{\rho} = \frac{10}{100} + 2 \times \frac{0.05}{0.35} + \frac{0.2}{15}\)
Calculating each term:
\(\frac{\Delta \rho}{\rho} = 0.1 + 2 \times 0.1429 + 0.0133\)
\(\frac{\Delta \rho}{\rho} \approx 0.1 + 0.2858 + 0.0133 = 0.3991 \approx 39.9\%\)
If \( T = 2\pi \sqrt{\frac{L}{g}} \), \( g \) is a constant and the relative error in \( T \) is \( k \) times to the percentage error in \( L \), then \( \frac{1}{k} = \) ?
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .