The formula for resistivity is given by:
\(\rho = R \frac{\pi r^2}{l}\)
The relative error in resistivity is given by:
\(\frac{\Delta \rho}{\rho} = \frac{\Delta R}{R} + 2 \frac{\Delta r}{r} + \frac{\Delta l}{l}\)
Substituting the given values:
\(\frac{\Delta \rho}{\rho} = \frac{10}{100} + 2 \times \frac{0.05}{0.35} + \frac{0.2}{15}\)
Calculating each term:
\(\frac{\Delta \rho}{\rho} = 0.1 + 2 \times 0.1429 + 0.0133\)
\(\frac{\Delta \rho}{\rho} \approx 0.1 + 0.2858 + 0.0133 = 0.3991 \approx 39.9\%\)
If \( T = 2\pi \sqrt{\frac{L}{g}} \), \( g \) is a constant and the relative error in \( T \) is \( k \) times to the percentage error in \( L \), then \( \frac{1}{k} = \) ?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).