The formula for the density of the wire is: \[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} = \frac{\text{Mass}}{\pi r^2 L}, \] where \( r \) is the radius and \( L \) is the length of the wire. The maximum percentage error in the density is given by: \[ \left( \frac{\Delta \rho}{\rho} \right) = \left( \frac{\Delta m}{m} \right) + 2 \left( \frac{\Delta r}{r} \right) + \left( \frac{\Delta L}{L} \right), \] where \( \Delta m, \Delta r, \) and \( \Delta L \) are the absolute errors in mass, radius, and length respectively.
Step 1: Calculate the percentage errors. - Percentage error in mass: \( \frac{\Delta m}{m} = \frac{0.003}{0.60} \times 100 = 0.5\% \), - Percentage error in radius: \( \frac{\Delta r}{r} = \frac{0.01}{0.50} \times 100 = 2\% \), - Percentage error in length: \( \frac{\Delta L}{L} = \frac{0.05}{10.00} \times 100 = 0.5\% \).
Step 2: Add the errors. The total percentage error in density: \[ \frac{\Delta \rho}{\rho} = 0.5\% + 2(2\%) + 0.5\% = 5\%. \]
Thus, the maximum percentage error in the measurement of the density is \( \boxed{5} \).
If \( T = 2\pi \sqrt{\frac{L}{g}} \), \( g \) is a constant and the relative error in \( T \) is \( k \) times to the percentage error in \( L \), then \( \frac{1}{k} = \) ?
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: