Question:

If the error in the measurement of the surface area of a sphere is 1.2%, then the error in the determination of the volume of the sphere is

Show Hint

For related measurements, use relative errors via differentiation or logarithmic differentiation to propagate errors. Percentage error is relative error times 100.
Updated On: Jun 5, 2025
  • 2.4%
  • 1.8%
  • 1.2%
  • 0.6%
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

For a sphere with radius \( r \), the surface area is \( S = 4\pi r^2 \) and the volume is \( V = \frac{4}{3}\pi r^3 \). Given the percentage error in surface area is 1.2%, i.e., \( \frac{\delta S}{S} \times 100 = 1.2 \), find the percentage error in volume, \( \frac{\delta V}{V} \times 100 \). Use logarithmic differentiation or relative errors: \[ S = 4\pi r^2 \implies \ln S = \ln (4\pi) + 2 \ln r \] \[ \frac{dS}{S} = 2 \frac{dr}{r} \implies \frac{\delta S}{S} \approx 2 \frac{\delta r}{r} \] \[ V = \frac{4}{3}\pi r^3 \implies \ln V = \ln \left( \frac{4}{3}\pi \right) + 3 \ln r \] \[ \frac{dV}{V} = 3 \frac{dr}{r} \implies \frac{\delta V}{V} \approx 3 \frac{\delta r}{r} \] Relate the errors: \[ \frac{\delta V}{V} = \frac{3 \frac{\delta r}{r}}{2 \frac{\delta r}{r}} \cdot \frac{\delta S}{S} = \frac{3}{2} \cdot \frac{\delta S}{S} \] \[ \frac{\delta V}{V} \times 100 = \frac{3}{2} \cdot 1.2 = 1.8% \] Option (2) is correct. Options (1), (3), and (4) do not match.
Was this answer helpful?
0
0

Top Questions on Error analysis

View More Questions