Step 1: Use the identity \( \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \).
The equation becomes:
\[
\sin^{-1} x + \sin^{-1} (1 - x) = \frac{\pi}{2} - \sin^{-1} x
\]
Step 2: Rearrange the equation.
\[
2 \sin^{-1} x + \sin^{-1} (1 - x) = \frac{\pi}{2}
\]
\[
\sin^{-1} (1 - x) = \frac{\pi}{2} - 2 \sin^{-1} x
\]
Step 3: Take the sine of both sides.
\[
1 - x = \sin\left(\frac{\pi}{2} - 2 \sin^{-1} x\right) = \cos(2 \sin^{-1} x)
\]
Step 4: Use the identity \( \cos(2\alpha) = 1 - 2 \sin^2 \alpha \).
Let \( \sin^{-1} x = \alpha \), so \( \sin \alpha = x \).
\[
1 - x = 1 - 2 \sin^2 (\sin^{-1} x) = 1 - 2 x^2
\]
Step 5: Solve the quadratic equation.
\[
2x^2 - x = 0 \implies x(2x - 1) = 0
\]
The possible solutions are \( x = 0 \) and \( x = \frac{1}{2} \).
Step 6: Verify the solutions.
For \( x = 0 \): \( \sin^{-1} 0 + \sin^{-1} 1 = 0 + \frac{\pi}{2} = \frac{\pi}{2} \), and \( \cos^{-1} 0 = \frac{\pi}{2} \). Valid.
For \( x = \frac{1}{2} \): \( \sin^{-1} \frac{1}{2} + \sin^{-1} \frac{1}{2} = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3} \), and \( \cos^{-1} \frac{1}{2} = \frac{\pi}{3} \). Valid.
Both solutions are valid.