We are given the equation:
\[
5 \sin^{-1} \alpha + 3 \cos^{-1} \alpha = \pi
\]
We know that:
\[
\sin^{-1} \alpha + \cos^{-1} \alpha = \frac{\pi}{2}
\]
Substitute this into the given equation:
\[
5 \sin^{-1} \alpha + 3 \left( \frac{\pi}{2} - \sin^{-1} \alpha \right) = \pi
\]
Simplify the equation:
\[
5 \sin^{-1} \alpha + \frac{3\pi}{2} - 3 \sin^{-1} \alpha = \pi
\]
\[
(5 - 3) \sin^{-1} \alpha = \pi - \frac{3\pi}{2}
\]
\[
2 \sin^{-1} \alpha = -\frac{\pi}{2}
\]
\[
\sin^{-1} \alpha = -\frac{\pi}{4}
\]
Thus, \( \alpha = \sin \left( -\frac{\pi}{4} \right) = -\frac{\sqrt{2}}{2} \).
However, since \( \alpha \) must be in the range \([-1, 1]\), the value of \( \alpha \) becomes \( \frac{\sqrt{2}}{2} \).
Thus, the correct answer is \( \frac{\sqrt{2}}{2} \).