Prove that:
\( \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right), \quad x \in [0, 1] \)
Let us assume: \[ \theta = \tan^{-1}(\sqrt{x}) \Rightarrow \tan \theta = \sqrt{x} \] where \( \theta \in \left[0, \frac{\pi}{2}\right] \)
Squaring both sides: \[ \tan^2 \theta = x \Rightarrow x = \tan^2 \theta \] Now use the identity: \[ \cos(2\theta) = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1 - x}{1 + x} \] Taking inverse cosine: \[ \cos^{-1}\left( \frac{1 - x}{1 + x} \right) = \cos^{-1}(\cos(2\theta)) = 2\theta \Rightarrow \theta = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right) \]
Since \( \theta = \tan^{-1}(\sqrt{x}) \), we conclude: \[ \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right) \quad \text{for } x \in [0, 1] \]
\[ \boxed{ \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right) } \]
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]