The domain of the function \( f(x) = \cos^{-1}(2x) \) is:
Show Hint
To find the domain of an inverse trigonometric function, ensure the input lies within the principal domain of the function. For \( \cos^{-1}(x) \), this domain is \([-1, 1]\).
We are given the function:
\[
f(x) = \cos^{-1}(2x)
\]
The inverse cosine function \( \cos^{-1}(y) \) is defined only when:
\[
-1 \leq y \leq 1
\]
Here, \( y = 2x \), so:
\[
-1 \leq 2x \leq 1
\]
Divide the entire inequality by 2:
\[
-\frac{1}{2} \leq x \leq \frac{1}{2}
\]
Hence, the domain of \( f(x) = \cos^{-1}(2x) \) is:
\[
x \in \left[-\frac{1}{2}, \frac{1}{2}\right]
\]