To determine the domain of the function \( f(x) = \cos^{-1}(2x) \), we need to consider the range of values for which the expression inside the inverse cosine function is valid. The primary condition for the inverse cosine function \( \cos^{-1}(y) \) is that its input \( y \) must be within the interval \([-1, 1]\).
Here, the input is \( 2x \), so we set up the inequality:
\(-1 \leq 2x \leq 1\)
We solve this compound inequality for \( x \) by dividing all parts of the inequality by 2:
\(-\frac{1}{2} \leq x \leq \frac{1}{2}\)
Thus, the domain of the function \( f(x) = \cos^{-1}(2x) \) is the interval:
\(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
Prove that:
\( \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right), \quad x \in [0, 1] \)
Find the principal value of:
\( \cos^{-1}\left(-\frac{1}{2}\right) + 2\sin^{-1}(1) \)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.