The moment of inertia of a uniform thin rod about a perpendicular axis passing through one end is I1. The same rod is bent into a ring and its moment of inertia about a diameter is I2. If
\(\frac{I_1}{I_2}\) is \(\frac{xπ²}{3}\)
then the value of x will be ______.
The correct answer is 8
\(I_1 = \frac{ML^2}{3} ...... (i)\)
For ring :
\(I_2 = \frac{MR^2}{2}\)and 2πR = L
\(⇒ I_2 = \frac{M}{2} (\frac{L²}{4π²}) ....... (ii)\)
From equation (i) and (ii) , we get
\(⇒ \frac{I_1}{I_2} = \frac{8π²}{3}\)
⇒ x = 8
A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Moment of inertia is defined as the quantity expressed by the body resisting angular acceleration which is the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
In general form, the moment of inertia can be expressed as,
I = m × r²
Where,
I = Moment of inertia.
m = sum of the product of the mass.
r = distance from the axis of the rotation.
M¹ L² T° is the dimensional formula of the moment of inertia.
The equation for moment of inertia is given by,
I = I = ∑mi ri²
To calculate the moment of inertia, we use two important theorems-