The moment of inertia of a rod is given by:
$I = \frac{1}{12}ML^2$.
Here, $I = 2400 \, g cm^2 = 2400 \times 10^{-7} \, kg m^2$, $M = 400 \, g = 0.4 \, kg$.
Rearrange to find $L$:
$L = \sqrt{\frac{12I}{M}} = \sqrt{\frac{12 \times 2400 \times 10^{-7}}{0.4}} = 8.5 \, cm$.
The moment of inertia of a thin rod about its midpoint is:
$$ I = \frac{1}{12} M L^2 $$
Rearranging the equation:
$$ L^2 = \frac{12I}{M} $$
Given:
Substituting the values:
$$ L^2 = \frac{12 \times 2400}{400} = 72 \text{ cm}^2 $$
Taking the square root:
$$ L = \sqrt{72} = 8.5 \text{ cm} $$
The length of the rod is 8.5 cm.