
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:

An ellipse is a locus of a point that moves in such a way that its distance from a fixed point (focus) to its perpendicular distance from a fixed straight line (directrix) is constant. i.e. eccentricity(e) which is less than unity
Read More: Conic Section
The ratio of distances from the center of the ellipse from either focus to the semi-major axis of the ellipse is defined as the eccentricity of the ellipse.
The eccentricity of ellipse, e = c/a
Where c is the focal length and a is length of the semi-major axis.
Since c ≤ a the eccentricity is always greater than 1 in the case of an ellipse.
Also,
c2 = a2 – b2
Therefore, eccentricity becomes:
e = √(a2 – b2)/a
e = √[(a2 – b2)/a2] e = √[1-(b2/a2)]
The area of an ellipse = πab, where a is the semi major axis and b is the semi minor axis.
Let the point p(x1, y1) and ellipse
(x2 / a2) + (y2 / b2) = 1
If [(x12 / a2)+ (y12 / b2) − 1)]
= 0 {on the curve}
<0{inside the curve}
>0 {outside the curve}