The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
To calculate the distance covered by the airplane in the first 30.5 seconds, we analyze its motion in two distinct phases:
1. Acceleration Phase (0-2 seconds):
The airplane accelerates uniformly from 200 m/s to 400 m/s.
- Initial velocity (vi) = 200 m/s
- Final velocity (vf) = 400 m/s
- Time duration (t) = 2 s
Distance covered:
\[ d_1 = \left(\frac{v_i + v_f}{2}\right) \times t = \left(\frac{200 + 400}{2}\right) \times 2 = 600 \text{ meters} \]
2. Constant Velocity Phase (2-30.5 seconds):
The airplane maintains a constant velocity of 400 m/s.
- Velocity (v) = 400 m/s
- Time duration (t) = 30.5 - 2 = 28.5 s
Distance covered:
\[ d_2 = v \times t = 400 \times 28.5 = 11,400 \text{ meters} \]
3. Total Distance Calculation:
\[ \text{Total distance} = d_1 + d_2 = 600 + 11,400 = 12,000 \text{ meters} \]
4. Unit Conversion:
\[ 12,000 \text{ meters} = 12 \text{ km} \]
Final Answer:
The airplane covers \(\boxed{12}\) kilometers in the first 30.5 seconds.
An object has moved through a distance can it have zero displacement if yes support your answer with an example.