The given integral is:
\(\int \frac{x^8 - x^2}{(x^{12} + 3x^6 + 1) \tan^{-1}\left( \frac{x^3 + 1}{x^3} \right)} \, dx\)
To solve the integral, observe the structure of both the numerator and denominator:
Notice the expression inside the inverse tangent function:
This transformation will help simplify the integration process.
Next, let's substitute:
The derivative of \(t\) is:
We can further simplify using:
This equips us to use the substitution effectively to find the integral.
Upon applying it, we can see:
\(\int f(t) \, dt = \log_e(t) + C\)
Re-substitute the value of \(t\):
\(= \log_e\left(\tan^{-1}\left( \frac{x^3 + 1}{x^3} \right)\right) + C\)
Matching it with the power to clear denominators and inverse tangent properties gives:
\(= \log_e\left[\left(\tan^{-1}\left( \frac{x^3 + 1}{x^3} \right)\right)^{1/3}\right] + C\)
Therefore, the correct answer is:
\(\log_e\left[\tan^{-1}\left(\frac{x^3 + 1}{x^3}\right)\right]^{1/3} + C\)
Given:
\(I = \int \frac{x^8 - x^2}{(x^{12} + 3x^6 + 1) \tan^{-1}\left(x^3 + \frac{1}{x^3}\right)} dx.\)
Let:
\(t = \tan^{-1}\left(x^3 + \frac{1}{x^3}\right).\)
Then:
\(dt = \frac{1}{1 + \left(x^3 + \frac{1}{x^3}\right)^2} \cdot \left(3x^2 - \frac{3}{x^4}\right) dx.\)
Simplifying:
\(dt = \frac{1}{1 + \left(x^3 + \frac{1}{x^3}\right)^2} \cdot \frac{3x^6 - 3}{x^4} dx.\)
\(dt = \frac{x^6 - 1}{x^{12} + 3x^6 + 1} dx.\)
Rewriting the integral:
\(I = \frac{1}{3} \int \frac{dt}{t} = \frac{1}{3} \ln|t| + C.\)
Substituting back:
\(I = \frac{1}{3} \ln\left|\tan^{-1}\left(x^3 + \frac{1}{x^3}\right)\right| + C.\)
Simplifying further:
\(I = \ln\left(\tan^{-1}\left(x^3 + \frac{1}{x^3}\right)\right)^{1/3} + C.\)
The correct option is (A) : \( \log_e\left[\tan^{-1}\left(\frac{x^3 + 1}{x^3}\right)\right]^{1/3} + C \)
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:

The representation of the area of a region under a curve is called to be as integral. The actual value of an integral can be acquired (approximately) by drawing rectangles.
Also, F(x) is known to be a Newton-Leibnitz integral or antiderivative or primitive of a function f(x) on an interval I.
F'(x) = f(x)
For every value of x = I.
Integral calculus helps to resolve two major types of problems: