Given:
\(I = \int \frac{x^8 - x^2}{(x^{12} + 3x^6 + 1) \tan^{-1}\left(x^3 + \frac{1}{x^3}\right)} dx.\)
Let:
\(t = \tan^{-1}\left(x^3 + \frac{1}{x^3}\right).\)
Then:
\(dt = \frac{1}{1 + \left(x^3 + \frac{1}{x^3}\right)^2} \cdot \left(3x^2 - \frac{3}{x^4}\right) dx.\)
Simplifying:
\(dt = \frac{1}{1 + \left(x^3 + \frac{1}{x^3}\right)^2} \cdot \frac{3x^6 - 3}{x^4} dx.\)
\(dt = \frac{x^6 - 1}{x^{12} + 3x^6 + 1} dx.\)
Rewriting the integral:
\(I = \frac{1}{3} \int \frac{dt}{t} = \frac{1}{3} \ln|t| + C.\)
Substituting back:
\(I = \frac{1}{3} \ln\left|\tan^{-1}\left(x^3 + \frac{1}{x^3}\right)\right| + C.\)
Simplifying further:
\(I = \ln\left(\tan^{-1}\left(x^3 + \frac{1}{x^3}\right)\right)^{1/3} + C.\)
The correct option is (A) : \( \log_e\left[\tan^{-1}\left(\frac{x^3 + 1}{x^3}\right)\right]^{1/3} + C \)
The representation of the area of a region under a curve is called to be as integral. The actual value of an integral can be acquired (approximately) by drawing rectangles.
Also, F(x) is known to be a Newton-Leibnitz integral or antiderivative or primitive of a function f(x) on an interval I.
F'(x) = f(x)
For every value of x = I.
Integral calculus helps to resolve two major types of problems: