Question:

The integral $\int\limits^{\frac{3\, \pi}{4}}_{\frac{\pi}{4}} \frac{dx}{ 1 + \cos \, x}$ is equal to :

Updated On: Feb 14, 2025
  • 2
  • 4
  • -1
  • -2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

$\int\limits^{\frac{3\, \pi}{4}}_{\frac{\pi}{4}} \frac{dx}{2 \cos^{2} \frac{x}{2}}dx = \frac{1}{2}\int\limits^{\frac{3\, \pi}{4}}_{\frac{\pi}{4}}\sec^{2} \frac{x}{2}dx$
$= \frac{1}{2}\left[\frac{\tan \frac{x}{2}}{\frac{1}{2}}\right]^{{\frac{3\pi}{4}}}_{{\frac{\pi}{4}}}$
$= \tan \frac{3\pi}{8}-\tan \frac{\pi}{8}$
$\left[\tan \frac{\pi}{8} = \sqrt{\frac{1-\cos \frac{\pi}{4}}{1+\cos \frac{\pi}{4}}} = \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}} = \frac{\sqrt{2}-1}{1} \tan \frac{3\pi}{8} = \sqrt{\frac{1-\cos \frac{3\pi}{4}}{1+\cos \frac{3\pi}{4}}}= \sqrt{\frac{\sqrt{2}+1}{\sqrt{2}-1}} = \sqrt{2} + 1\right]$
$= \left(\sqrt{2}+1\right)-\left(\sqrt{2}-1\right)$
$= 2$
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.