Given reactions and enthalpies:
The reaction for \(H_2(g)\) and \(O_2(g)\) to form \(H_2O(g)\) is given by:
\(H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g); \Delta H(H_2O(g)) = -242 \, \text{kJ/mol}\)
From the given data:
The bond energy formula is:
\(\Delta H(H_2O(g)) = 440 + 250 - 2 (\text{B.E.} (O-H))\)
Substituting the values:
\(-242 = 440 + 250 - 2 (\text{B.E.} (O-H))\)
Solving for \(\text{B.E.} (O-H)\):
\(\text{B.E.} (O-H) = 466 \, \text{kJ/mol}\)
The minimum value of $ n $ for which the number of integer terms in the binomial expansion $\left(7^{\frac{1}{3}} + 11^{\frac{1}{12}}\right)^n$ is 183, is