Question:

An ideal gas expands from 2 L to 6 L at a constant temperature of 300 K. Calculate the work done by the gas if pressure remains constant at 2 atm. (1 atm = $1.013 \times 10^5$ Pa)

Show Hint

For constant pressure expansion, use $W = P \Delta V$; always convert atm to Pa and L to m\textsuperscript{3} before calculation.
Updated On: May 28, 2025
  • 810.4
  • 820
  • 820.5
  • 795.5
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given: \[ P = 2 \, \text{atm} = 2 \times 1.013 \times 10^5 \, \text{Pa} = 2.026 \times 10^5 \, \text{Pa} \] \[ \Delta V = V_f - V_i = 6\, \text{L} - 2\, \text{L} = 4\, \text{L} = 4 \times 10^{-3} \, \text{m}^3 \] Work done by the gas at constant pressure is: \[ W = P \Delta V = 2.026 \times 10^5 \times 4 \times 10^{-3} = 810.4 \, \text{J} \] But this doesn’t match any options — let's recheck: Actually, \[ W = 2 \, \text{atm} \times (6 - 2) \, \text{L} = 2 \times 4 = 8 \, \text{L atm} \] \[ 1\, \text{L atm} = 101.3 \, \text{J} \Rightarrow W = 8 \times 101.3 = 810.4 \, \text{J} \]
Was this answer helpful?
1
0

Top Questions on Thermodynamics

View More Questions