The bond enthalpy can be calculated using the following equation based on Hess's law: \[ \Delta H_f^\circ(H_2O) = \text{Bond enthalpy of O-H} \times 2 - \left( \Delta H_f^\circ(H_2) + \Delta H_f^\circ(O_2) \right) \] \[ -242 = 2 \times \text{Bond enthalpy of O-H} - (220 + 250) \] \[ -242 = 2 \times \text{Bond enthalpy of O-H} - 470 \] \[ 2 \times \text{Bond enthalpy of O-H} = 228 \] \[ \text{Bond enthalpy of O-H} = 114 \, \text{kJ/mol} \] Final Conclusion: The average bond enthalpy of the O-H bond in water is 114 kJ/mol.

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
