The bond enthalpy can be calculated using the following equation based on Hess's law: \[ \Delta H_f^\circ(H_2O) = \text{Bond enthalpy of O-H} \times 2 - \left( \Delta H_f^\circ(H_2) + \Delta H_f^\circ(O_2) \right) \] \[ -242 = 2 \times \text{Bond enthalpy of O-H} - (220 + 250) \] \[ -242 = 2 \times \text{Bond enthalpy of O-H} - 470 \] \[ 2 \times \text{Bond enthalpy of O-H} = 228 \] \[ \text{Bond enthalpy of O-H} = 114 \, \text{kJ/mol} \] Final Conclusion: The average bond enthalpy of the O-H bond in water is 114 kJ/mol.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 