Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The energy associated with a chemical reaction that can be used to do work.It is the sum of its enthalpy plus the product of the temperature and the entropy (S) of the system.
The Gibbs free energy is the maximum amount of non-expansion work that can be extracted from a thermodynamically closed system. In completely reversible process maximum enthalpy can be obtained.
ΔG=ΔH−TΔS
If both it’s intensive properties and extensive properties are constant then thermodynamic system is in equilibrium. Extensive properties imply the U, G, A.