The standard Gibbs energy change ($\Delta G^\circ$) is related to the standard cell potential (E$^\circ$) by:
\[ \Delta G^\circ = -nFE^\circ \]
where:
n is the number of moles of electrons transferred in the balanced redox reaction.
F is Faraday's constant (96487 C mol$^{-1}$).
E$^\circ$ is the standard cell potential.
In the given reaction, Zn(s) is oxidized to Zn$^{2+}$(aq) and Fe$^{2+}$(aq) is reduced to Fe(s).
Thus, n=2. E$^\circ$ = 0.32 V
\(\Delta G^\circ = -(2 mol)(96487 C mol^{-1})(0.32 V) \)
\(\Delta G^\circ = -61751.04 J mol^{-1} \approx -61.75 kJ mol^{-1}\)
Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): A typical unfertilized, angiosperm embryo sac at maturity is 8-nucleate and 7-celled.
Reason (R): The egg apparatus has 2 polar nuclei.
In the light of the above statements, choose the correct answer from the options given below: