For a reaction to be spontaneous, the Gibbs free energy (\( \Delta G \)) must be negative: \[ \Delta G = \Delta H - T \Delta S \] where: - \( \Delta H \) is the enthalpy change, - \( \Delta S \) is the entropy change, - \( T \) is the temperature. For a reaction that is non-spontaneous at the freezing point of water and spontaneous at the boiling point of water, we can analyze the situation: - At the freezing point of water (273 K), the reaction is non-spontaneous, so: \[ \Delta G = \Delta H - T \Delta S>0 \] - At the boiling point of water (373 K), the reaction is spontaneous, so: \[ \Delta G = \Delta H - T \Delta S<0 \] From this, we can infer that: - \( \Delta H \) is positive: The reaction is endothermic. - \( \Delta S \) is positive: The reaction leads to an increase in disorder (entropy increases). Thus, both \( \Delta H \) and \( \Delta S \) are positive, which aligns with option (1).
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)