The energy of an electron in first Bohr orbit of H-atom is $-13.6$ eV. The magnitude of energy value of electron in the first excited state of Be$^{3+}$ is _____ eV (nearest integer value)
The total energy is given by:
\( E_T = - \frac{13.6 \, z^2}{n^2} \, \text{eV} \)
For the energy of the H atom in the 1st Bohr orbit, where \( z = 1 \) and \( n = 1 \):
\( E_1 = -13.6 \, \text{eV} \, [z = 1, n = 1] \)
For the \( \text{Be}^{3+} \) ion, the energy of the 1st excited state is given by \( z = 4 \) and \( n = 2 \):
\( \frac{E_H}{E_{\text{Be}^{3+}}} = \left( \frac{z_1}{n_1} \right)^2 \times \left( \frac{n_2}{z_2} \right)^2 \)
Substituting the values:
\( \frac{E_H}{E_{\text{Be}^{3+}}} = \frac{1^2}{1^2} \times \frac{2^2}{4^2} \)
Thus:
\( \frac{E_H}{E_{\text{Be}^{3+}}} = \frac{1}{1} \times \frac{4}{16} \)
So, the energy of the \( \text{Be}^{3+} \) ion is:
\( E_{\text{Be}^{3+}} = -13.6 \times 4 = -54.4 \, \text{eV} \)
Therefore, the magnitude of the energy is:
\( |E_{\text{Be}^{3+}}| = 54.4 \, \text{eV} \)
The figures below show:
Which of the following points in Figure 2 most accurately represents the nodal surface shown in Figure 1?
But-2-yne and hydrogen (one mole each) are separately treated with (i) Pd/C and (ii) Na/liq.NH₃ to give the products X and Y respectively.
Identify the incorrect statements.
A. X and Y are stereoisomers.
B. Dipole moment of X is zero.
C. Boiling point of X is higher than Y.
D. X and Y react with O₃/Zn + H₂O to give different products.
Choose the correct answer from the options given below :
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 