Step 1: State the three postulates of Bohr’s theory.
1. The electron revolves in circular orbits, with quantized angular momentum:
\[
m v r = \frac{n h}{2\pi},
\]
where \( m \) is the electron’s mass, \( v \) is its velocity, \( r \) is the radius, \( n \) is the quantum number, and \( h \) is Planck’s constant.
2. The electron does not radiate energy while in these allowed orbits.
3. The electron transitions between orbits by emitting or absorbing a photon:
\[
\Delta E = h \nu,
\]
where \( \nu \) is the frequency of the photon.
(a): Prove the radius \( r \propto n^2 \).
From the first postulate:
\[
m v r = \frac{n h}{2\pi} \quad \Rightarrow \quad v = \frac{n h}{2\pi m r}.
\]
The centripetal force equals the Coulomb force:
\[
\frac{m v^2}{r} = \frac{k e^2}{r^2}.
\]
Substitute \( v \):
\[
\frac{m}{r} \left( \frac{n h}{2\pi m r} \right)^2 = \frac{k e^2}{r^2} \quad \Rightarrow \quad \frac{n^2 h^2}{4\pi^2 m r^3} = \frac{k e^2}{r^2} \quad \Rightarrow \quad r = \frac{n^2 h^2}{4\pi^2 m k e^2}.
\]
Thus, \( r \propto n^2 \).
(b): Prove the total energy \( E \propto \frac{1}{n^2} \).
Total energy:
\[
E = \frac{1}{2} m v^2 - \frac{k e^2}{r}.
\]
From the force balance, \( \frac{m v^2}{r} = \frac{k e^2}{r^2} \), so:
\[
\frac{1}{2} m v^2 = \frac{1}{2} \frac{k e^2}{r}.
\]
Thus:
\[
E = \frac{1}{2} \frac{k e^2}{r} - \frac{k e^2}{r} = -\frac{1}{2} \frac{k e^2}{r}.
\]
Substitute \( r = \frac{n^2 h^2}{4\pi^2 m k e^2} \):
\[ E = -\frac{1}{2} \frac{k e^2}{\frac{n^2 h^2}{4\pi^2 m k e^2}}} = -\frac{2\pi^2 m k^2 e^4}{n^2 h^2}.\]
Thus, \( E \propto -\frac{1}{n^2} \), or the magnitude \( |E| \propto \frac{1}{n^2} \).