Magnetic moment depends on number of unpaired electrons, calculated by:
\[
\mu = \sqrt{n(n+2)}\,\text{BM}
\]
Where \( n \) = number of unpaired electrons. Let's calculate for each:
- Fe\(^{2+}\): Atomic number 26 → Fe\(^{2+}\) = 3d\(^6\) → 4 unpaired electrons
- Co\(^{2+}\): Atomic number 27 → Co\(^{2+}\) = 3d\(^7\) → 3 unpaired electrons
- Cr\(^{3+}\): Atomic number 24 → Cr\(^{3+}\) = 3d\(^3\) → 3 unpaired electrons
- Ni\(^{2+}\): Atomic number 28 → Ni\(^{2+}\) = 3d\(^8\) → 2 unpaired electrons
But Cr\(^{3+}\) has only 3 electrons all unpaired in \( t_{2g} \) orbitals with no pairing energy losses, thus greater stability and maximum spin-only moment (low pairing). Hence:
\[
\mu_{\text{Cr}^{3+}} = \sqrt{3(3+2)} = \sqrt{15} \approx 3.87\,\text{BM}
\]
While Fe\(^{2+}\) has 4 unpaired, it experiences some pairing loss in high-spin cases. So Cr\(^{3+}\) shows more stable unpaired electron configuration.
\[
\boxed{\text{Cr}^{3+}\ \text{has highest magnetic moment}}
\]