Understanding the Signal:
\( \delta[n] \) is the unit impulse (or Dirac delta function in discrete time). Its defining property is:
\[
\delta[n] =
\begin{cases}
1, & \text{if } n = 0 \\
0, & \text{otherwise}
\end{cases}
\]
Given signal: \( x[n] = A\delta[n] \)
Energy of a discrete-time signal:
\[
E = \sum_{n=-\infty}^{\infty} |x[n]|^2
\]
Now,
\[
x[n] = A\delta[n] \Rightarrow |x[n]|^2 = A^2 \delta[n]
\]
\[
E = \sum_{n=-\infty}^{\infty} A^2 \delta[n] = A^2 \sum_{n=-\infty}^{\infty} \delta[n] = A^2 (1) = A^2
\]