For a rectangular waveguide, the cut-off frequency for the \( \text{TE}_{mn} \) mode is:
\[
f_{c_{mn}} = \frac{1}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2} \cdot c
\]
where:
\( c = 3 \times 10^8 \, \text{m/s} \) (speed of light)
\( a = 5 \, \text{cm} = 0.05 \, \text{m} \)
\( b = 2.5 \, \text{cm} = 0.025 \, \text{m} \)
\( m, n \) are integers (\( m \geq 0, n \geq 0, m \text{ or } n \neq 0 \))
We calculate \( f_c \) for different \( m,n \) values and check which modes satisfy \( f_c < 8 \, \text{GHz} \)
TE10:
\[
f_c = \frac{c}{2a} = \frac{3 \times 10^8}{2 \times 0.05} = 3 \, \text{GHz}
\]
TE01:
\[
f_c = \frac{c}{2b} = \frac{3 \times 10^8}{2 \times 0.025} = 6 \, \text{GHz}
\]
TE20:
\[
f_c = \frac{c \cdot 2}{2a} = \frac{6 \times 10^8}{2 \times 0.05} = 6 \, \text{GHz}
\]
TE11:
\[
f_c = \frac{c}{2} \sqrt{\left(\frac{1}{a}\right)^2 + \left(\frac{1}{b}\right)^2}
= \frac{3 \times 10^8}{2} \sqrt{(20)^2 + (40)^2}
= \frac{3 \times 10^8}{2} \cdot \sqrt{2000}
\approx 6.7 \, \text{GHz}
\]
TE02:
\[
f_c = \frac{c \cdot 2}{2b} = \frac{6 \times 10^8}{2 \times 0.025} = 12 \, \text{GHz} > 8 \, \text{GHz (Not allowed)}
\]
Valid modes with \( f_c < 8 \, \text{GHz} \):
- TE10: 3 GHz
- TE01: 6 GHz
- TE20: 6 GHz
- TE11: ~6.7 GHz
- TE21: Can be computed but may also fall within range
Final Answer: Five modes