Let the given sequence be:
\[
x[n] = \{0, 1, 2, 3\}
\]
We compute the 4-point DFT (Discrete Fourier Transform) using:
\[
X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-j2\pi nk/N},\quad k = 0, 1, 2, 3
\]
Here, \( N = 4 \)
Step 1: Compute X[0]:
\[
X[0] = x[0] + x[1] + x[2] + x[3] = 0 + 1 + 2 + 3 = 6
\]
Step 2: Compute X[1]:
\[
\begin{aligned}
X[1] &= x[0] + x[1]e^{-j2\pi(1)/4} + x[2]e^{-j2\pi(2)/4} + x[3]e^{-j2\pi(3)/4} \\
&= 0 + 1(-j) + 2(-1) + 3(j) = -j -2 + 3j = -2 + 2j
\end{aligned}
\]
Step 3: Compute X[2]:
\[
\begin{aligned}
X[2] &= x[0] + x[1]e^{-j2\pi(2)/4} + x[2]e^{-j2\pi(4)/4} + x[3]e^{-j2\pi(6)/4} \\
&= 0 + 1(-1) + 2(1) + 3(-1) = -1 + 2 -3 = -2
\end{aligned}
\]
Step 4: Compute X[3]:
\[
\begin{aligned}
X[3] &= x[0] + x[1]e^{-j2\pi(3)/4} + x[2]e^{-j2\pi(6)/4} + x[3]e^{-j2\pi(9)/4} \\
&= 0 + 1(j) + 2(-1) + 3(-j) = j -2 -3j = -2 -2j
\end{aligned}
\]
So the FFT result is:
\[
\{6,\ -2 + 2j,\ -2,\ -2 - 2j\}
\]