Given the electric field of the electromagnetic wave:
\[ \vec{E} = \hat{i} 40 \cos \omega \left( t - \frac{z}{c} \right) \, \text{NC}^{-1} \]
In an electromagnetic wave, the magnetic field \(\vec{B}\) is perpendicular to both the electric field \(\vec{E}\) and the direction of propagation.
Since \(\vec{E}\) is along the \(\hat{i}\)-direction and the wave propagates along the \(\hat{k}\)-direction, the magnetic field \(\vec{B}\) must be along the \(\hat{j}\)-direction.
The relationship between the magnitudes of the electric and magnetic fields in an electromagnetic wave is given by:
\[ B = \frac{E}{c} \]
Substituting the given electric field magnitude:
\[ B = \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right) \]
Thus, the magnetic field is:
\[ \vec{B} = \hat{j} \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right) \]
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to