Given the electric field of the electromagnetic wave:
\[ \vec{E} = \hat{i} 40 \cos \omega \left( t - \frac{z}{c} \right) \, \text{NC}^{-1} \]
In an electromagnetic wave, the magnetic field \(\vec{B}\) is perpendicular to both the electric field \(\vec{E}\) and the direction of propagation.
Since \(\vec{E}\) is along the \(\hat{i}\)-direction and the wave propagates along the \(\hat{k}\)-direction, the magnetic field \(\vec{B}\) must be along the \(\hat{j}\)-direction.
The relationship between the magnitudes of the electric and magnetic fields in an electromagnetic wave is given by:
\[ B = \frac{E}{c} \]
Substituting the given electric field magnitude:
\[ B = \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right) \]
Thus, the magnetic field is:
\[ \vec{B} = \hat{j} \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right) \]
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: