Given the electric field of the electromagnetic wave:
\[ \vec{E} = \hat{i} 40 \cos \omega \left( t - \frac{z}{c} \right) \, \text{NC}^{-1} \]
In an electromagnetic wave, the magnetic field \(\vec{B}\) is perpendicular to both the electric field \(\vec{E}\) and the direction of propagation.
Since \(\vec{E}\) is along the \(\hat{i}\)-direction and the wave propagates along the \(\hat{k}\)-direction, the magnetic field \(\vec{B}\) must be along the \(\hat{j}\)-direction.
The relationship between the magnitudes of the electric and magnetic fields in an electromagnetic wave is given by:
\[ B = \frac{E}{c} \]
Substituting the given electric field magnitude:
\[ B = \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right) \]
Thus, the magnetic field is:
\[ \vec{B} = \hat{j} \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right) \]
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
