Given:
\[ \beta = -\frac{\Delta P}{\Delta V / V} \] \[ \Delta P = -\beta \frac{\Delta V}{V} \]Pressure difference due to sea water:
\[ \rho g h = -\beta \frac{\Delta V}{V} \]Substituting the given values:
\[ 10^3 \times 10 \times h = -9 \times 10^8 \times \left(-\frac{0.02}{100}\right) \]Simplifying:
\[ h = 18 \, \text{m} \]Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32