Given:
\[ \beta = -\frac{\Delta P}{\Delta V / V} \] \[ \Delta P = -\beta \frac{\Delta V}{V} \]Pressure difference due to sea water:
\[ \rho g h = -\beta \frac{\Delta V}{V} \]Substituting the given values:
\[ 10^3 \times 10 \times h = -9 \times 10^8 \times \left(-\frac{0.02}{100}\right) \]Simplifying:
\[ h = 18 \, \text{m} \]Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: