The fractional compression \(\frac{\Delta V}{V}\) is given by:
\[ \frac{\Delta V}{V} = -\frac{\Delta P}{B} \]
The pressure \(\Delta P\) at the bottom of the ocean is:
\[ \Delta P = \rho gh = 1000 \times 10 \times 4000 = 4 \times 10^7 \, \text{Pa} \]
Thus,
\[ \frac{\Delta V}{V} = -\frac{4 \times 10^7}{2 \times 10^9} = -2 \times 10^{-2} \]
Therefore, \(\alpha = 2\).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: