The fractional compression \(\frac{\Delta V}{V}\) is given by:
\[ \frac{\Delta V}{V} = -\frac{\Delta P}{B} \]
The pressure \(\Delta P\) at the bottom of the ocean is:
\[ \Delta P = \rho gh = 1000 \times 10 \times 4000 = 4 \times 10^7 \, \text{Pa} \]
Thus,
\[ \frac{\Delta V}{V} = -\frac{4 \times 10^7}{2 \times 10^9} = -2 \times 10^{-2} \]
Therefore, \(\alpha = 2\).
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: