The fractional compression \(\frac{\Delta V}{V}\) is given by:
\[ \frac{\Delta V}{V} = -\frac{\Delta P}{B} \]
The pressure \(\Delta P\) at the bottom of the ocean is:
\[ \Delta P = \rho gh = 1000 \times 10 \times 4000 = 4 \times 10^7 \, \text{Pa} \]
Thus,
\[ \frac{\Delta V}{V} = -\frac{4 \times 10^7}{2 \times 10^9} = -2 \times 10^{-2} \]
Therefore, \(\alpha = 2\).
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)