To determine the fractional compression \( \frac{\Delta V}{V} \) of water at the bottom of the ocean, we start by understanding the relationship given by the definition of the bulk modulus \( B \), which is:
Bulk Modulus Equation:
\( B = -\frac{\Delta P}{\frac{\Delta V}{V}} \)
Where:
We first need to determine the pressure increase \( \Delta P \) at the bottom of the ocean due to the water column. Using the hydrostatic pressure formula, we have:
Hydrostatic Pressure:
\( \Delta P = \rho g h \)
Where:
Substitute the known values:
\[ \Delta P = 1000 \times 10 \times 4000 = 4 \times 10^7 \, \text{N/m}^2 \]
Using the bulk modulus equation, we solve for the fractional change in volume:
\[ \frac{\Delta V}{V} = -\frac{\Delta P}{B} \]
Substitute \( \Delta P \) and \( B \) values:
\[ \frac{\Delta V}{V} = -\frac{4 \times 10^7}{2 \times 10^9} = -0.02 \]
Expressing this in the given format \( \alpha \times 10^{-2} \), we find:
\[ \alpha = 2 \]
Verification:
The computed value of \( \alpha = 2 \) falls within the given range of 2,2, confirming the solution is correct.
The fractional compression \(\frac{\Delta V}{V}\) is given by:
\[ \frac{\Delta V}{V} = -\frac{\Delta P}{B} \]
The pressure \(\Delta P\) at the bottom of the ocean is:
\[ \Delta P = \rho gh = 1000 \times 10 \times 4000 = 4 \times 10^7 \, \text{Pa} \]
Thus,
\[ \frac{\Delta V}{V} = -\frac{4 \times 10^7}{2 \times 10^9} = -2 \times 10^{-2} \]
Therefore, \(\alpha = 2\).
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.