Structure:
Total perimeter: \[ = x + 2y + 2x = 3x + 2y \]
If the total perimeter is given as 12, then: \[ 3x + 2y = 12 \quad \text{(Equation 1)} \]
Total area: \[ A(x) = A_1 + A_2 = x \cdot y + \frac{\sqrt{3}}{4} x^2 \]
From perimeter equation: \[ 3x + 2y = 12 \Rightarrow 2y = 12 - 3x \Rightarrow y = \frac{12 - 3x}{2} \]
\[ A(x) = x \cdot \frac{12 - 3x}{2} + \frac{\sqrt{3}}{4} x^2 \] \[ A(x) = \frac{12x - 3x^2}{2} + \frac{\sqrt{3}}{4} x^2 \]
\[ \boxed{A(x) = \frac{12x - 3x^2}{2} + \frac{\sqrt{3}}{4} x^2} \]
\[ A(x) = \frac{12x - 3x^2}{2} + \frac{\sqrt{3}}{4}x^2 \]
\[ A(x) = 6x - \frac{3}{2}x^2 + \frac{\sqrt{3}}{4}x^2 = 6x + x^2\left( \frac{\sqrt{3}}{4} - \frac{3}{2} \right) \Rightarrow A(x) = 6x + x^2 \cdot \frac{\sqrt{3} - 6}{4} \]
\[ \frac{dA}{dx} = 6 + 2x \cdot \frac{\sqrt{3} - 6}{4} = 6 + x \cdot \frac{\sqrt{3} - 6}{2} \]
\[ 6 + x \cdot \frac{\sqrt{3} - 6}{2} = 0 \Rightarrow x(\sqrt{3} - 6) = -12 \Rightarrow x = \frac{-12}{\sqrt{3} - 6} \]
Rationalize denominator (optional):
\[ x = \frac{-12}{\sqrt{3} - 6} \cdot \frac{\sqrt{3} + 6}{\sqrt{3} + 6} = \frac{-12(\sqrt{3} + 6)}{(\sqrt{3} - 6)(\sqrt{3} + 6)} = \frac{-12(\sqrt{3} + 6)}{3 - 36} = \frac{-12(\sqrt{3} + 6)}{-33} = \frac{12(\sqrt{3} + 6)}{33} \]
From perimeter: \[ y = \frac{12 - 3x}{2} \] Substitute the value of \( x \):
\[ y = \frac{12 - 3 \cdot \left( \frac{12}{6 - \sqrt{3}} \right)}{2} \quad \text{or use the rationalized form if required} \]
\[ \boxed{ x = \frac{12}{6 - \sqrt{3}}, \quad y = \frac{12 - 3x}{2} } \]
These are the dimensions of the rectangle that allow maximum light through the window.
The window consists of a rectangle of base \( x \) and height \( y \), and an equilateral triangle of base \( x \): \[ \text{Total Area} = \text{Area of Rectangle} + \text{Area of Triangle} = xy + \frac{\sqrt{3}}{4}x^2 \]
Given: \[ xy + \frac{\sqrt{3}}{4}x^2 = 50 \Rightarrow y = \frac{50 - \frac{\sqrt{3}}{4}x^2}{x} \]
Perimeter includes:
So total perimeter: \[ P = x + 2y + 2x = 3x + 2y \] Now substitute the value of \( y \): \[ P(x) = 3x + 2 \cdot \left( \frac{50 - \frac{\sqrt{3}}{4}x^2}{x} \right) = 3x + \frac{100}{x} - \frac{\sqrt{3}}{2}x \]
\[ \boxed{P(x) = 3x + \frac{100}{x} - \frac{\sqrt{3}}{2}x} \]
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?

The center of a circle $ C $ is at the center of the ellipse $ E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $, where $ a>b $. Let $ C $ pass through the foci $ F_1 $ and $ F_2 $ of $ E $ such that the circle $ C $ and the ellipse $ E $ intersect at four points. Let $ P $ be one of these four points. If the area of the triangle $ PF_1F_2 $ is 30 and the length of the major axis of $ E $ is 17, then the distance between the foci of $ E $ is:
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]