The area of the smaller region enclosed by the curves y2 = 8x + 4 and
x2+y2+4√3x-4=0
is equal to
To find the area of the smaller region enclosed by the curves \( y^2 = 8x + 4 \) and \( x^2 + y^2 + 4\sqrt{3}x - 4 = 0 \), we need to analyze and compute the area step-by-step.
The correct choice is thus: \(\frac{1}{3}(4 - 12\sqrt{3} + 8\pi)\)
The correct answer is (C):

\(cosθ =\frac{ 2√3}{4}\)
= √3/4
⇒ θ = 30°
Area of the required region
=\(\frac{ 2}{3}(4×\frac{1}{2})+42×\frac{π}{6}-\frac{1}{2}×4×2√3\)
= \(\frac{4}{3}+\frac{8π}{3}-4√3\)
= \(\frac{1}{3}{4-12√3+8π}\)
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Integral calculus is the method that can be used to calculate the area between two curves that fall in between two intersecting curves. Similarly, we can use integration to find the area under two curves where we know the equation of two curves and their intersection points. In the given image, we have two functions f(x) and g(x) where we need to find the area between these two curves given in the shaded portion.

Area Between Two Curves With Respect to Y is
If f(y) and g(y) are continuous on [c, d] and g(y) < f(y) for all y in [c, d], then,
