As given in the picture, the area is calculated as:
Required Area = \( \frac{1}{2} \times 2 \times 2 + \frac{1}{2} \times 3 \times 3 + \frac{1}{2} \times 1 \times 11 \)
Required Area = \( 2 + \frac{9}{2} + \frac{11}{2} \)
Required Area = \( 2 + \frac{20}{2} \)
Required Area = \( 2 + 10 \) Required Area = \( 12 \)
Thus, following the given solution, the area is 12.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: