Question:

If the area of the region bounded by the curves $ y = 4 - \frac{x^2}{4} $ and $ y = \frac{x - 4}{2} $ is equal to $ \alpha $, then $ 6\alpha $ equals:

Show Hint

To find the area between curves, set up an integral for the difference of the curves over the given interval. Make sure to simplify the integrand before solving the integral.
Updated On: Apr 24, 2025
  • \( 250 \)
  • \( 210 \)
  • \( 240 \)
  • \( 220 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Find Points of Intersection

Set the two equations equal to find intersection points:
\[ 4 - \frac{x^2}{4} = \frac{x - 4}{2} \]
Multiply through by 4:
\[ 16 - x^2 = 2(x - 4) \]
\[ 16 - x^2 = 2x - 8 \]
Rearrange:
\[ x^2 + 2x - 24 = 0 \]
Solve the quadratic equation:
\[ x = \frac{-2 \pm \sqrt{4 + 96}}{2} = \frac{-2 \pm 10}{2} \]
\[ x = 4 \quad \text{or} \quad x = -6 \]

Step 2: Determine Upper and Lower Curves

Test at \(x = 0\):
\[ \begin{align} \text{Parabola:} & \quad y = 4 - 0 = 4 \\ \text{Line:} & \quad y = \frac{0 - 4}{2} = -2 \end{align} \]
The parabola is above the line in \([-6, 4]\).

Step 3: Set Up the Integral

The area \(\alpha\) is:
\[ \alpha = \int_{-6}^{4} \left[\left(4 - \frac{x^2}{4}\right) - \left(\frac{x - 4}{2}\right)\right] dx \]
Simplify the integrand:
\[ 6 - \frac{x^2}{4} - \frac{x}{2} \]

Step 4: Compute the Integral

Break into three parts:
\[ \begin{align} \int_{-6}^{4} 6 \, dx &= 6(4 - (-6)) = 60 \\ \int_{-6}^{4} \frac{x^2}{4} \, dx &= \frac{1}{12}\left[x^3\right]_{-6}^{4} = \frac{1}{12}(64 - (-216)) = \frac{280}{12} = \frac{70}{3} \\ \int_{-6}^{4} \frac{x}{2} \, dx &= \frac{1}{4}\left[x^2\right]_{-6}^{4} = \frac{1}{4}(16 - 36) = -5 \end{align} \]
Combine results:
\[ \alpha = 60 - \frac{70}{3} - (-5) = 65 - \frac{70}{3} = \frac{125}{3} \]

Step 5: Calculate \(6\alpha\)

\[ 6\alpha = 6 \times \frac{125}{3} = 250 \]

Step 6: Match with Options

The correct answer is option (1) 250.

Final Answer (1) 250

Was this answer helpful?
0
0