Step 1: Find Points of Intersection
Set the two equations equal to find intersection points:
\[ 4 - \frac{x^2}{4} = \frac{x - 4}{2} \]
Multiply through by 4:
\[ 16 - x^2 = 2(x - 4) \]
\[ 16 - x^2 = 2x - 8 \]
Rearrange:
\[ x^2 + 2x - 24 = 0 \]
Solve the quadratic equation:
\[ x = \frac{-2 \pm \sqrt{4 + 96}}{2} = \frac{-2 \pm 10}{2} \]
\[ x = 4 \quad \text{or} \quad x = -6 \]
Step 2: Determine Upper and Lower Curves
Test at \(x = 0\):
\[ \begin{align} \text{Parabola:} & \quad y = 4 - 0 = 4 \\ \text{Line:} & \quad y = \frac{0 - 4}{2} = -2 \end{align} \]
The parabola is above the line in \([-6, 4]\).
Step 3: Set Up the Integral
The area \(\alpha\) is:
\[ \alpha = \int_{-6}^{4} \left[\left(4 - \frac{x^2}{4}\right) - \left(\frac{x - 4}{2}\right)\right] dx \]
Simplify the integrand:
\[ 6 - \frac{x^2}{4} - \frac{x}{2} \]
Step 4: Compute the Integral
Break into three parts:
\[ \begin{align} \int_{-6}^{4} 6 \, dx &= 6(4 - (-6)) = 60 \\ \int_{-6}^{4} \frac{x^2}{4} \, dx &= \frac{1}{12}\left[x^3\right]_{-6}^{4} = \frac{1}{12}(64 - (-216)) = \frac{280}{12} = \frac{70}{3} \\ \int_{-6}^{4} \frac{x}{2} \, dx &= \frac{1}{4}\left[x^2\right]_{-6}^{4} = \frac{1}{4}(16 - 36) = -5 \end{align} \]
Combine results:
\[ \alpha = 60 - \frac{70}{3} - (-5) = 65 - \frac{70}{3} = \frac{125}{3} \]
Step 5: Calculate \(6\alpha\)
\[ 6\alpha = 6 \times \frac{125}{3} = 250 \]
Step 6: Match with Options
The correct answer is option (1) 250.
Final Answer (1) 250
The eccentricity of the curve represented by $ x = 3 (\cos t + \sin t) $, $ y = 4 (\cos t - \sin t) $ is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: