Identify intersections of lines and parabola within the range \( |x| \leq 3 \).
Solve \( 2|x| + 1 = x^2 + 1 \) for \( x \).
\[ 2|x| = x^2 \]
\[ x = -2, 0, 2 \quad \text{(Only valid within the given range)} \]
\[ \text{Area} = \int_{-2}^{0} (x^2 + 1 - (2(-x) + 1)) \, dx + \int_{0}^{2} (x^2 + 1 - (2x + 1)) \, dx \]
\[ = \int_{-2}^{0} (x^2 - 2x) \, dx + \int_{0}^{2} (x^2 - 2x) \, dx \]
\[ \text{Area} = 2 \times \int_{0}^{2} (x^2 - 2x) \, dx \]
\[ = 2 \times \left[ \frac{x^3}{3} - x^2 \right]_0^2 \]
\[ = 2 \times \left[ \frac{8}{3} - 4 \right] \]
\[ = 2 \times \left[ -\frac{4}{3} \right] = -\frac{8}{3} \]
\[ \text{Total Area} = 2 \times \left| -\frac{8}{3} \right| = \frac{16}{3} \]
If the area of the region \[ \{(x, y) : 1 - 2x \le y \le 4 - x^2,\ x \ge 0,\ y \ge 0\} \] is \[ \frac{\alpha}{\beta}, \] \(\alpha, \beta \in \mathbb{N}\), \(\gcd(\alpha, \beta) = 1\), then the value of \[ (\alpha + \beta) \] is :
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 