Identify intersections of lines and parabola within the range \( |x| \leq 3 \).
Solve \( 2|x| + 1 = x^2 + 1 \) for \( x \).
\[ 2|x| = x^2 \]
\[ x = -2, 0, 2 \quad \text{(Only valid within the given range)} \]
\[ \text{Area} = \int_{-2}^{0} (x^2 + 1 - (2(-x) + 1)) \, dx + \int_{0}^{2} (x^2 + 1 - (2x + 1)) \, dx \]
\[ = \int_{-2}^{0} (x^2 - 2x) \, dx + \int_{0}^{2} (x^2 - 2x) \, dx \]
\[ \text{Area} = 2 \times \int_{0}^{2} (x^2 - 2x) \, dx \]
\[ = 2 \times \left[ \frac{x^3}{3} - x^2 \right]_0^2 \]
\[ = 2 \times \left[ \frac{8}{3} - 4 \right] \]
\[ = 2 \times \left[ -\frac{4}{3} \right] = -\frac{8}{3} \]
\[ \text{Total Area} = 2 \times \left| -\frac{8}{3} \right| = \frac{16}{3} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.