Identify intersections of lines and parabola within the range \( |x| \leq 3 \).
Solve \( 2|x| + 1 = x^2 + 1 \) for \( x \).
\[ 2|x| = x^2 \]
\[ x = -2, 0, 2 \quad \text{(Only valid within the given range)} \]
\[ \text{Area} = \int_{-2}^{0} (x^2 + 1 - (2(-x) + 1)) \, dx + \int_{0}^{2} (x^2 + 1 - (2x + 1)) \, dx \]
\[ = \int_{-2}^{0} (x^2 - 2x) \, dx + \int_{0}^{2} (x^2 - 2x) \, dx \]
\[ \text{Area} = 2 \times \int_{0}^{2} (x^2 - 2x) \, dx \]
\[ = 2 \times \left[ \frac{x^3}{3} - x^2 \right]_0^2 \]
\[ = 2 \times \left[ \frac{8}{3} - 4 \right] \]
\[ = 2 \times \left[ -\frac{4}{3} \right] = -\frac{8}{3} \]
\[ \text{Total Area} = 2 \times \left| -\frac{8}{3} \right| = \frac{16}{3} \]
Let \( f(x) = -3x^2(1 - x) - 3x(1 - x)^2 - (1 - x)^3 \). Then, \( \frac{df(x)}{dx} = \)
Let the area of the bounded region $ \{(x, y) : 0 \leq 9x \leq y^2, y \geq 3x - 6 \ be $ A $. Then 6A is equal to: