Step 1: Understanding the Concept:
This is an integral of a square root of a quadratic expression. The standard technique is to complete the square for the quadratic expression inside the root to transform it into the form \(\sqrt{a^2 - u^2}\), \(\sqrt{u^2 - a^2}\), or \(\sqrt{u^2 + a^2}\). This allows the use of a standard integration formula.
Step 2: Key Formula or Approach:
1. Complete the square for the quadratic \(3 - 2x - x^2\).
2. Rewrite the integral in the standard form \(\int \sqrt{a^2 - u^2} du\).
3. Apply the standard integration formula:
\[ \int \sqrt{a^2 - u^2} du = \frac{u}{2}\sqrt{a^2 - u^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{u}{a}\right) + C \]
Step 3: Detailed Explanation:
First, complete the square for the expression inside the square root:
\[ 3 - 2x - x^2 = -(x^2 + 2x - 3) \]
\[ = -( (x^2 + 2x + 1) - 1 - 3 ) \]
\[ = -( (x+1)^2 - 4 ) \]
\[ = 4 - (x+1)^2 \]
So, the integral becomes:
\[ \int \sqrt{4 - (x+1)^2} dx \]
This is now in the form \(\int \sqrt{a^2 - u^2} du\), where:
\(a^2 = 4 \implies a = 2\)
\(u = x+1 \implies du = dx\)
Now, apply the standard formula:
\[ \int \sqrt{a^2 - u^2} du = \frac{u}{2}\sqrt{a^2 - u^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{u}{a}\right) + C \]
Substitute back \(a=2\) and \(u=x+1\):
\[ \int \sqrt{4 - (x+1)^2} dx = \frac{x+1}{2}\sqrt{4 - (x+1)^2} + \frac{4}{2}\sin^{-1}\left(\frac{x+1}{2}\right) + C \]
\[ = \frac{x+1}{2}\sqrt{3 - 2x - x^2} + 2\sin^{-1}\left(\frac{x+1}{2}\right) + C \]
Step 4: Final Answer:
The value of the integral is \(\frac{x+1}{2}\sqrt{3 - 2x - x^2} + 2\sin^{-1}\left(\frac{x+1}{2}\right) + C\).