Step 1: The given vector equation \( \mathbf{a} \times \mathbf{c} = \mathbf{a} \times \mathbf{b} \) implies that \( \mathbf{c} \) lies in the plane formed by \( \mathbf{a} \) and \( \mathbf{b} \). We will use this condition to express \( \mathbf{c} \) in terms of \( \mathbf{a} \) and \( \mathbf{b} \).
Step 2: The dot product equation \( (\mathbf{a} + \mathbf{c}) \cdot (\mathbf{b} + \mathbf{c}) = 168 \) provides a second condition to find \( \mathbf{c} \). Expand the dot product and solve for \( | \mathbf{c} |^2 \).
Step 3: By solving these equations, we find that the maximum value of \( | \mathbf{c} |^2 \) is 308. Thus, the correct answer is (3).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: