Step 1: The given vector equation \( \mathbf{a} \times \mathbf{c} = \mathbf{a} \times \mathbf{b} \) implies that \( \mathbf{c} \) lies in the plane formed by \( \mathbf{a} \) and \( \mathbf{b} \). We will use this condition to express \( \mathbf{c} \) in terms of \( \mathbf{a} \) and \( \mathbf{b} \).
Step 2: The dot product equation \( (\mathbf{a} + \mathbf{c}) \cdot (\mathbf{b} + \mathbf{c}) = 168 \) provides a second condition to find \( \mathbf{c} \). Expand the dot product and solve for \( | \mathbf{c} |^2 \).
Step 3: By solving these equations, we find that the maximum value of \( | \mathbf{c} |^2 \) is 308. Thus, the correct answer is (3).
Which of the following circuits has the same output as that of the given circuit?

Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 