1. Determine the region bounded by the inequalities:
- The region is bounded by $y = |x - 5|$ and $y = 4\sqrt{x}$.
2. Find the intersection points of the curves:
- Solve $y = |x - 5|$ and $y = 4\sqrt{x}$:
\[
|x - 5| = 4\sqrt{x}
\]
- For $x \geq 5$:
\[
x - 5 = 4\sqrt{x}
\]
\[
x - 4\sqrt{x} - 5 = 0
\]
- Let $u = \sqrt{x}$, then $u^2 - 4u - 5 = 0$:
\[
u = \frac{4 \pm \sqrt{16 + 20}}{2} = \frac{4 \pm 6}{2}
\]
\[
u = 5 \quad \text{or} \quad u = -1 \quad (\text{not valid})
\]
\[
x = 25
\]
- For $x<5$:
\[
5 - x = 4\sqrt{x}
\]
\[
5 - 4\sqrt{x} - x = 0
\]
- Let $u = \sqrt{x}$, then $u^2 + 4u - 5 = 0$:
\[
u = \frac{-4 \pm \sqrt{16 + 20}}{2} = \frac{-4 \pm 6}{2}
\]
\[
u = 1 \quad \text{or} \quad u = -5 \quad (\text{not valid})
\]
\[
x = 1
\]
3. Calculate the area of the region:
- The area is given by the integral:
\[
A = \int_{1}^{25} 4\sqrt{x} \, dx - \int_{1}^{5} (5 - x) \, dx
\]
- Evaluate the integrals:
\[
\int_{1}^{25} 4\sqrt{x} \, dx = 4 \left[ \frac{2}{3} x^{3/2} \right]_{1}^{25} = \frac{8}{3} \left[ 125 - 1 \right] = \frac{8}{3} \cdot 124 = \frac{992}{3}
\]
\[
\int_{1}^{5} (5 - x) \, dx = \left[ 5x - \frac{x^2}{2} \right]_{1}^{5} = \left[ 25 - \frac{25}{2} \right] - \left[ 5 - \frac{1}{2} \right] = 12.5 - 4.5 = 8
\]
- Total area:
\[
A = \frac{992}{3} - 8 = \frac{992 - 24}{3} = \frac{968}{3} = \frac{320}{3}
\]
- Therefore, $3A = 320$.
Therefore, the correct answer is (1) 368.