The eccentricity of the curve represented by $ x = 3 (\cos t + \sin t) $, $ y = 4 (\cos t - \sin t) $ is:
The eccentricity \( e \) of a conic curve represented parametrically by \( x(t) \) and \( y(t) \) is given by: \[ e = \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \] We are given: \[ x = 3 (\cos t + \sin t) \] \[ y = 4 (\cos t - \sin t) \]
1. First, we find \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \): \[ \frac{dx}{dt} = 3 (-\sin t + \cos t) \] \[ \frac{dy}{dt} = 4 (-\sin t - \cos t) \]
2. Then, we calculate \( \frac{dy}{dx} \) using the chain rule: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4 (-\sin t - \cos t)}{3 (-\sin t + \cos t)} \]
3. Finally, we compute the eccentricity: \[ e = \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \]
After simplifying the expression, we get the eccentricity as \( \frac{\sqrt{7}}{4} \).
Thus, the correct answer is \( \frac{\sqrt7}{4} \).
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Which of the following compounds can exhibit geometrical isomerism, and why?
1) 2-butene
2) 1-butene ?
3) Pent-2-ene
4) But-2-yne
The integral $ \int_0^1 \frac{1}{2 + \sqrt{2e}} \, dx $ is: