1. The coordinates of opposite vertices of a cube are \((0, 0, 0)\) and \((a, a, a)\). The diagonal of the cube is the line connecting these two points.
2. The diagonals of a cube form vectors:
\[ \vec{d}_1 = (a, a, a), \quad \vec{d}_2 = (-a, a, a). \]
3. The angle between two diagonals is given by:
\[ \cos \theta = \frac{\vec{d}_1 \cdot \vec{d}_2}{|\vec{d}_1||\vec{d}_2|}. \]
4. Compute:
\[ \vec{d}_1 \cdot \vec{d}_2 = -a^2 + a^2 + a^2 = a^2. \]
\[ |\vec{d}_1| = |\vec{d}_2| = \sqrt{3}a. \]
5. Substitute:
\[ \cos \theta = \frac{a^2}{3a^2} = \frac{1}{3}. \]
6. Therefore:
\[ \theta = \cos^{-1}\left(\frac{1}{3}\right). \]
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals:

A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of: