We are tasked with solving the given vector problem and determining the maximum value of \( |\mathbf{c}|^2 \). Let us proceed step by step:
1. Given Information:
The vectors \( \mathbf{a} \) and \( \mathbf{b} \) are defined as:
\( \mathbf{a} = 2\hat{i} - \hat{j} + 3\hat{k} \)
\( \mathbf{b} = 3\hat{i} - 5\hat{j} + \hat{k} \)
The conditions involving \( \mathbf{c} \) are:
\( \mathbf{a} \times \mathbf{c} = \mathbf{c} \times \mathbf{b} \)
\( \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c} = 0 \)
\( (\mathbf{a} + \mathbf{b}) \times \mathbf{c} = 0 \)
2. Expressing \( \mathbf{c} \):
From the condition \( (\mathbf{a} + \mathbf{b}) \times \mathbf{c} = 0 \), it follows that \( \mathbf{c} \) is parallel to \( \mathbf{a} + \mathbf{b} \). Thus, we can write:
\( \mathbf{c} = \lambda (\mathbf{a} + \mathbf{b}) \)
Substitute \( \mathbf{a} + \mathbf{b} \):
\( \mathbf{a} + \mathbf{b} = (2\hat{i} - \hat{j} + 3\hat{k}) + (3\hat{i} - 5\hat{j} + \hat{k}) = 5\hat{i} - 6\hat{j} + 4\hat{k} \)
Thus:
\( \mathbf{c} = \lambda (5\hat{i} - 6\hat{j} + 4\hat{k}) \quad \text{(Equation 1)} \)
3. Magnitude Squared of \( \mathbf{c} \):
The magnitude squared of \( \mathbf{c} \) is given by:
\( |\mathbf{c}|^2 = \lambda^2 |5\hat{i} - 6\hat{j} + 4\hat{k}|^2 \)
Compute the magnitude squared of \( 5\hat{i} - 6\hat{j} + 4\hat{k} \):
\( |5\hat{i} - 6\hat{j} + 4\hat{k}|^2 = 5^2 + (-6)^2 + 4^2 = 25 + 36 + 16 = 77 \)
Thus:
\( |\mathbf{c}|^2 = 77\lambda^2 \)
4. Dot Product Condition:
We are given the condition:
\( (\mathbf{a} + \mathbf{c}) \cdot (\mathbf{b} + \mathbf{c}) = 168 \)
Expand the dot product:
\( \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{b} + |\mathbf{c}|^2 = 168 \)
Compute \( \mathbf{a} \cdot \mathbf{b} \):
\( \mathbf{a} \cdot \mathbf{b} = (2)(3) + (-1)(-5) + (3)(1) = 6 + 5 + 3 = 14 \)
Substitute \( \mathbf{c} = \lambda (5\hat{i} - 6\hat{j} + 4\hat{k}) \):
\( \mathbf{a} \cdot \mathbf{c} = \lambda (\mathbf{a} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k})) \)
Compute \( \mathbf{a} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k}) \):
\( \mathbf{a} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k}) = (2)(5) + (-1)(-6) + (3)(4) = 10 + 6 + 12 = 28 \)
Similarly, \( \mathbf{c} \cdot \mathbf{b} = \lambda (\mathbf{b} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k})) \):
Compute \( \mathbf{b} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k}) \):
\( \mathbf{b} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k}) = (3)(5) + (-5)(-6) + (1)(4) = 15 + 30 + 4 = 49 \)
Substitute back into the equation:
\( 14 + \lambda (28 + 49) + 77\lambda^2 = 168 \)
Simplify:
\( 14 + 77\lambda + 77\lambda^2 = 168 \)
\( 77\lambda^2 + 77\lambda - 154 = 0 \)
5. Solving the Quadratic Equation:
Divide through by 77:
\( \lambda^2 + \lambda - 2 = 0 \)
Factorize:
\( (\lambda + 2)(\lambda - 1) = 0 \)
Thus:
\( \lambda = -2 \quad \text{or} \quad \lambda = 1 \)
6. Finding the Maximum \( |\mathbf{c}|^2 \):
Substitute \( \lambda = -2 \) and \( \lambda = 1 \) into \( |\mathbf{c}|^2 = 77\lambda^2 \):
For \( \lambda = -2 \):
\( |\mathbf{c}|^2 = 77(-2)^2 = 77 \cdot 4 = 308 \)
For \( \lambda = 1 \):
\( |\mathbf{c}|^2 = 77(1)^2 = 77 \cdot 1 = 77 \)
The maximum value occurs when \( \lambda = -2 \).
\( |\mathbf{c}|^2 = 77(-2)^2 = 77 \cdot 4 = 308 \)
Final Answer:
The maximum value of \( |\mathbf{c}|^2 \) is \( \boxed{308} \).
Show that the line passing through the points A $(0, -1, -1)$ and B $(4, 5, 1)$ intersects the line joining points C $(3, 9, 4)$ and D $(-4, 4, 4)$.