A quantity \( X \) is given by:
\[
X = \frac{\epsilon_0 L \Delta V}{\Delta t}
\]
where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of:
Show Hint
For small angle approximations, remember that \( \cos(x) \approx 1 - \frac{x^2}{2} \) and \( \tan(x) \approx x \). These approximations are very useful for solving limits involving trigonometric functions as \( x \to 0 \).
We need to determine the dimension of \( X \) and compare it with the dimensions of the given options.
The formula for \( X \) is:
\[
X = \frac{\epsilon_0 L \Delta V}{\Delta t}
\]
Step 1: Analyzing the units and dimensions
1. \( \epsilon_0 \) (Permittivity of free space):
The dimension of \( \epsilon_0 \) is:
\[
[\epsilon_0] = \frac{\text{Coulomb}^2}{\text{Newton} \cdot \text{meter}^2} = \frac{\text{A}^2 \cdot \text{s}^4}{\text{kg} \cdot \text{m}^3}
\]
2. \( L \) (Length):
The dimension of length is:
\[
[L] = \text{m}
\]
3. \( \Delta V \) (Potential difference):
The dimension of potential difference (Voltage) is:
\[
[\Delta V] = \frac{\text{Joule}}{\text{Coulomb}} = \frac{\text{kg} \cdot \text{m}^2}{\text{s}^3 \cdot \text{A}}
\]
4. \( \Delta t \) (Time interval):
The dimension of time is:
\[
[\Delta t] = \text{s}
\]
Step 2: Determining the dimension of \( X \)
Substitute the dimensions of each quantity into the formula for \( X \):
\[
[X] = \frac{[\epsilon_0] \cdot [L] \cdot [\Delta V]}{[\Delta t]}
\]
\[
[X] = \frac{\left(\frac{\text{A}^2 \cdot \text{s}^4}{\text{kg} \cdot \text{m}^3}\right) \cdot \text{m} \cdot \left(\frac{\text{kg} \cdot \text{m}^2}{\text{s}^3 \cdot \text{A}}\right)}{\text{s}}
\]
Simplifying the expression:
\[
[X] = \frac{\text{A}^2 \cdot \text{s}^4 \cdot \text{m}^3 \cdot \text{kg}}{\text{kg} \cdot \text{m}^3 \cdot \text{s}^3 \cdot \text{A} \cdot \text{s}}
\]
Cancel out common units:
\[
[X] = \text{A} \cdot \text{s}
\]
Thus, the dimension of \( X \) is:
\[
[X] = \text{Current} \cdot \text{Time}
\]
Step 3: Conclusion
The correct answer is:
\[
\boxed{(D) \text{Current}}
\]