The molar mass of H\(_2\)SO\(_4\) is \(98 \, \text{g/mol}\), and to neutralize H\(_2\)SO\(_4\) , we need 2 moles of NaOH per mole of H\(_2\)SO\(_4\) . The equation for the neutralization reaction is:
\[
\text{H}_2\text{SO}_4 + 2\text{NaOH} \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}
\]
Given that we have 9.8g of H\(_2\)SO\(_4\) , the number of moles of H\(_2\)SO\(_4\) is:
\[
\text{moles of H\(_2\)SO\(_4\) } = \frac{9.8}{98} = 0.1 \, \text{mol}
\]
Since 2 moles of NaOH are required to neutralize 1 mole of H\(_2\)SO\(_4\) , the moles of NaOH required are:
\[
\text{moles of NaOH} = 0.1 \times 2 = 0.2 \, \text{mol}
\]
Thus, the correct answer is 0.1 mol of H\(_2\)SO\(_4\) .