We are given two equations involving trigonometric functions:
\[
\sin x + \sin y = a \quad \text{and} \quad \cos x + \cos y = b
\]
with the additional condition that \( x + y = \frac{2\pi}{3} \).
We will use the sum identities for sine and cosine to express the given equations in terms of \( x + y \) and \( x - y \).
1. Use the sum identity for sine:
\[
\sin x + \sin y = 2 \sin \left( \frac{x + y}{2} \right) \cos \left( \frac{x - y}{2} \right)
\]
Substituting \( x + y = \frac{2\pi}{3} \) into the equation, we get:
\[
a = 2 \sin \left( \frac{\pi}{3} \right) \cos \left( \frac{x - y}{2} \right)
\]
Since \( \sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \), we have:
\[
a = \sqrt{3} \cos \left( \frac{x - y}{2} \right)
\]
2. Similarly, use the sum identity for cosine:
\[
\cos x + \cos y = 2 \cos \left( \frac{x + y}{2} \right) \cos \left( \frac{x - y}{2} \right)
\]
Substituting \( x + y = \frac{2\pi}{3} \) again:
\[
b = 2 \cos \left( \frac{\pi}{3} \right) \cos \left( \frac{x - y}{2} \right)
\]
Since \( \cos \left( \frac{\pi}{3} \right) = \frac{1}{2} \), we get:
\[
b = \cos \left( \frac{x - y}{2} \right)
\]
From the equations for \( a \) and \( b \), we can solve for \( a \) and \( b \). Given that \( \cos \left( \frac{x - y}{2} \right) = \frac{1}{\sqrt{2}} \), we find that:
\[
a = \frac{1}{2}, \quad b = \frac{1}{\sqrt{2}}
\]