$( S 1)(p \Rightarrow q) \vee(p \wedge(\sim q))$ is a tautology(S2) $((\sim p) \Rightarrow(\sim q)) \wedge((\sim p) \vee q)$ is a contradictionThen

| p | q | p ⇒ q | ∼q | p∧∼q | (p ⇒ q) ∨ (p∧∼q) | 
|---|---|---|---|---|---|
| T | T | T | F | F | T | 
| T | F | F | T | T | T | 
| F | T | T | F | F | T | 
| F | F | T | T | F | T | 
 
| ∼p | ∼q | ∼p ⇒ ∼q | ∼p ∨ q | ((∼p) ⇒ (∼q)) ∧ (∼p)∨q) | 
|---|---|---|---|---|
| F | F | T | T | T | 
| F | T | T | F | F | 
| T | F | F | T | F | 
| T | T | T | T | T | 

Step 1: Analyze \( S1 \): \[ S1 = (p \Rightarrow q) \vee (p \land \neg q). \] Let's check its truth table: \[ \begin{array}{|c|c|c|c|} \hline p & q & p \Rightarrow q & p \land \neg q \\ \hline T & T & T & F \\ T & F & F & T \\ F & T & T & F \\ F & F & T & F \\ \hline \end{array} \] For \( (p \Rightarrow q) \vee (p \land \neg q) \), we evaluate the disjunction in each case: 
- When \( p = T \) and \( q = T \), \( (p \Rightarrow q) = T \), and \( (p \land \neg q) = F \), so the result is \( T \). 
- When \( p = T \) and \( q = F \), \( (p \Rightarrow q) = F \), and \( (p \land \neg q) = T \), so the result is \( T \). 
- When \( p = F \) and \( q = T \), \( (p \Rightarrow q) = T \), and \( (p \land \neg q) = F \), so the result is \( T \). 
- When \( p = F \) and \( q = F \), \( (p \Rightarrow q) = T \), and \( (p \land \neg q) = F \), so the result is \( T \). 
Thus, it evaluates to true in all cases, which means \( S1 \) is a tautology. 
Step 2: Analyze \( S2 \): \[ S2 = (\neg p) \Rightarrow (\neg q) \land ((\neg p) \vee q). \] Let's check its truth table: \[ \begin{array}{|c|c|c|c|c|c|} \hline p & q & \neg p & \neg q & (\neg p) \Rightarrow (\neg q) & (\neg p) \vee q \\ \hline T & T & F & F & T & T \\ T & F & F & T & T & F \\ F & T & T & F & F & T \\ F & F & T & T & T & T \\ \hline \end{array} \] From the truth table, we see that \( S2 \) does not evaluate to false for all cases, meaning \( S2 \) is not a contradiction. It evaluates to true in some cases, and therefore \( S2 \) is not incorrect but has cases where it is true.
If 
\( p \): It is raining today, 
\( q \): I go to school, 
\( r \): I shall meet my friends, 
and \( s \): I shall go for a movie, then which of the following represents:
"If it does not rain or if I do not go to school, then I shall meet my friend and go for a movie?"
Which of the following is/are correct with respect to the energy of atomic orbitals of a hydrogen atom? 
(A) \( 1s<2s<2p<3d<4s \) 
(B) \( 1s<2s = 2p<3s = 3p \) 
(C) \( 1s<2s<2p<3s<3p \) 
(D) \( 1s<2s<4s<3d \)
 Choose the correct answer from the options given below:
Mathematical reasoning or the principle of mathematical reasoning is a part of mathematics where we decide the truth values of the given statements. These reasoning statements are common in most competitive exams like JEE and the questions are extremely easy and fun to solve.
Mathematically, reasoning can be of two major types such as: